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1. INTRODUCTION AND DESCRIPTION OF METHOD

The spline-on-spline technique is of much use for calculating the second
derivative of a function from its values on a uniform mesh. There is
computational evidence that this gives better results than the traditional
process using a single spline [1,3]. For any integer n~ 1, let An: O=Xo <
XI < ... < X n = 1 with knots xj = jh. Given a sufficiently smooth function
/ defined on [0, 1], let s be an interpolatory cubic spline of / and P be a
cubic spline-on-spline interpolant of s' defined by

(i) s.=.1:(=/(x))J J J

(ii) Pj=sj (=s'(xj ))

(O:::;;j:::;;n)

(O:::;;j:::;; n).
(1 )

Then we have the following asymptotic error estimate under approximate
end conditions [2, 3]:

while

h2

.1:-" -s" =_/(4) + O(h4 )
J J 12 J
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(h -+ 0)

(h -+ 0).

(2)
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In the present paper we shall consider an application of the spline-on
spline interpolation to a numerical integration of the form

f+1 f(x) dx
Xi

or (+1 f(x) dxItl

f(x) dx (0 ~j ~ n -1). (3)

Here we hope that the formula on [xj , xj + l ] has only evaluation knots Xi

(0 ~ i ~ n), i.e., J~+ 1 f( x) dx ~ "a linear combination of fO,/1> ...,/n."
First we show that an integral of the spline-on-spline interpolant P of s'

gives better results than the spline s itself i.e.,

~{( p(x) dx- r+1
p(x) dx+ ~ +~+I}

= f(x) - ~; (t -D (6t4-12t3 +4t2+2t +5)f]5)

+O(h6
) (Xj~X~XHI' t=(x-xj)/h). (4)

For the calculation of the above integral, we have the following identity
that can be easily checked since p is cubic on [xj ' x j + I]:

fp(x)dx- f+l p(x)dx
Xl x

= h{pj¢J(1- t) - Pj+ 1¢J(t)}

+ h2{pN(1- t) + PJ+ 1"'(t)}

where

¢J( t) = ~ - 2t3 + t4

./,(t) _.1. _ "J.t2+1t4
'I' - 12 3 2·

On the other hand,

h4

s(x) = f(x) - - t2(1 - t)2 f(4)
4! }

(5)

(6)

(O~j~n-l).

Next, integration of (4) gives the formula

fXi+1 h h2

Xi f(x) dX~Ij(h)=2(~+~+d+ 10 (Pj - PH d

h 3

+ 120 (pj + PJ+ I) (7)
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For the error

SAKAI AND USMANI

Similarly, integration of the spline S gives the numerical quadrature [1]

(O~j~n-l). (9)

For the error,

f
X.+l h5 h7

J _ __ (4) (6) 8
Xj f(x)dx KAh)-nofJ+1/2 2016fJ+1/2+0(h), (10)

where gJ+ 1/2 = g«XJ+ XJ+d/2). By means of the asymptotic expansion
(10), Richardson extrapolation gives an O(h7

) approximation without
having to calculate the spline-on-spline interpolant, i.e.,

-! h7:r(7) O(h 8 )- 7! J+ 1/2 + . (11 )

Since the ratio of the asymptotic error estimates (8) and (11) is
approximately 23/96 (~ 1/4), our spline-on-spline integration formula
gives better results than the Richardson extrapolation of a single spline
one. As for computational effort, we have to solve two linear systems of
order (n/2 + 1) and (n + 1) to determine s2h and shin the extrapolation. In
the spline-on-spline technique, the coefficient matrices for determining Sh

and Ph are exactly the same and so Phis determined with a little additional
effort. For an efficient algorithm for solving the systems, see [1, p. 14].
Hence we are justified using the spline-on-spline integration formula
instead of the extrapolation of the single spline one.
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2. ASYMPTOTIC ERROR ESTIMATES
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Since S (or p) depends upon n +3 parameters, there are two additional
conditions to (l)(i) (or (l)(ii)) required for a unique determination of the
spline S (or p). Here we take these two end ones:

(i) ,1rs~ = vrs~ = 0

(ii) ,1rp~ = vrp~ = 0,
(12)

where r is a nonnegative integer and ,1 (V) is the forward (backward)
difference operator. By repeated use of the consistency relation for the
cubic spline s,

,1rs~ = 0 can be equivalently rewritten as

(13 )

(r # 2), (14)

where ar is a rational number and Lr(so, Sj, ..., sr) is a linear combination
of So, S\, ..., Sr (for these, see [3]). For example,

a6 = 15/4

where di means the right-hand side of (13).
In order to prove (4) and (8), we shall require

LEMMA 3. Under the end conditions (12), we have

(ii)

(i) 1" _ (- 1" _ ') _ ~f(5) _ h
6

f(7)
Jj Pj -Jj Sj -180 j 1512 j

+O(hmin(8.r») (0 ~ j ~ n)

ff - pj = ~~fJ6) -7
h
5
6
6 fj8 )

(15)

(0 ~j~n).

This proves the following

640/59/3-8
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THEOREM. For r ~ 6, under (12) we have

(i) Hh{pj~(I-t)-pj+I~(t)}+ h2 {pjljJ(l-t) + PJ+Il/J(t)}
+ h+h+IJ = f(x)+O(h 5) (Xj~X~Xj+I' t =
(x-xJ/h, O~j~n-l),

where O(h5) is to be replaced with O(h6) at x = (xj + xj+1)/2;

COROLLARY. For r ~ 6,

I n-lf f(x) dx- L Ij(h)
o j=O

= _(~.23)h6{f(5)(I)_f(5)(0)}+O(h7) (16)
7! 12 '

where, by use of the consistency relation for cubic spline P,

n-l h
L Ij(h)="2(fo+2fl+···+ 2fn-l+fn)
j~O

h2

+ 120 (11po - PI + Pn-l -llpn)

+ 3
h
:0 (2p~ + p~ + P~-l + 2p~). (17)

Finally, we note that the extrapolate of the trapezoidal rule also gives

( f(x) dx- T2(h)

= -9~5h6{f(5)(I)-P5)(0)}+O(h8), (18)

where To(h) = h(fo +2/1 + ... +2In-1 + In), TI(h)= {4To(h)- To(2h)}/3,
and T2(h) = {16TI(h)- T I(2h)}/15. By (16) and (18), we see that the rate
of the errors of our method and the extrapolation of the trapezoidal rule
is about 23/128 (~ 1/5.5).
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TABLE I

eX
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n K

16
32
64

128
256

1.11
1.04
1.02

E K

4.31-11 a 2.70
6.30--13 1.69
9.69-15 1.22

1.06
1.02

2.82-5
2.77-7
3.11-9
4.23-11
6.35-13

a We denote 4.31 x 10- 11 by 4.31-11.

3. NUMERICAL ILLUSTRATION

The results of some numerical experiments are given in Table I for the
functions eX and eSx. Here we choose r = 6.

K(j) = - {(+1 f(x) dx - Ij(h)}I[(23h6/7! .12)

·{jj5]j-f)5l}] (O~j~n-l)

K = - {( f(x) dx - ~t~ Ij(h)}I[(23h
6
/7! ·12)

. {j(S)(I) _ j<S)(O)}]

8= -{( f(x)dx- ~t~ Ij(h)}.

Then, by means of the theorem and its corollary, K(j) and K tend to 1 as
h -. O. Except for i near 0 and n, K(j) are nearly to 1. For example, 0.99 ~
K(j) ~ 1.01 (5 ~ j ~ n - 1) with n = 64, 128 for eSx.
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